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We consider the problem of determining analytically some exact solutions of the
concentration u(x, y, t) of particles moving by diffusion and advection or drift.
It is assumed that the advection is nonlinear. The driven diffusive flow is
impeded by an impenetrable obstacle (rod) of length L. The exact solutions for
u are evaluated for small and big values of vL�D, where v is the drift velocity
and D is the diffusion coefficient. The results show that in some regions in the
(x, y) plane the concentration first increases (or decreases) monotonically and
then is nearly constant after some critical length L. The location at which u is
nearly constant depends on the nature of the driving field v�D. This problem has
relevance for the size segregation of particulate matter which results from the
relative motion of different-size particles induced by shaking. Methods of sym-
metry reduction are used in solving the nonlinear advection-diffusion equation
in (2+1) dimensions.

KEY WORDS: Lattice fluid models; advection-diffusion processes; symmetry
reduction method.

I. INTRODUCTION AND SURVEY

Size segregation effects are important in many industrial situations in
which granular mixtures of particles of different sizes are used. Because of
its industrial importance in powder metallurgy, pharmaceuticals and the
glass and paint industries, it has been the subject of considerable study in
the engineering community.(1�5) The emphasis in these studies has been on
the segregation rate and its independence on parameters such as particle
size and weight ratio and shaking frequency, rather than analytical descrip-
tion of this phenomena. In an effort to better understand the dynamics of
the segregation process, the dynamical picture of this phenomena is
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modeled by Rosato, Strandburg, Prinz and Swendsen (RSPS).(6, 7) They
conducted a series of computer simulations on mixtures exhibiting such a
segregation. Their simulations gave results consistent with experiments;
after many shakes, the larger disks lie on top of the smaller ones in a non-
equilibrium stationary state. Motivated by their work, Alexander and
Lebowitz (AL) (8, 9) investigated the behaviour of a simple lattice gas
system, which exhibit a similar size-dependent relative motion, to model
segregation of different sized particles subjected to shaking in a gravita-
tional field. The model consists of a gas of monomers and a single rod of
length L on a two-dimensional square lattice, Z2, and that the rod is rigidly
aligned in the vertical direction. A monomer occupies one site and the rod
more than one. The particles interact by exclusion; no more than one par-
ticle per site is permitted A monomer at site x waits an exponential time
with parameter one and then selects a lattice direction e

�
=(e1 , e2) with

probability P(e
�
). If the neighbouring site y in the direction e

�
; y=x+e

�
is

unoccupied at that time, the particle jumps to that site; otherwise it does
not move. The rod moves according to a dynamics similar to that of the
monomers; the rod of length L to move horizontally, all L sites immediately
adjacent to it in the direction of motion must be simultaneously unoccupied,
and the vertical motion requires only that the one site adjacent in that
direction be empty. When there is no rod present, this model is just the
much studied simple exclusion process, (10) and if the exchange rates are
symmetric; P(\e1)=P(\e2)=1�4, the process is reversible and under a
proper resealing of space and time the rod motion converges to standard
Brownian motion with a positive diffusion constant. When the exchange
rates are not symmetric, the process is non-reversible and the particles
attempted to move to a neighbouring sites in one particular direction by
the probabilities P(e

�
), for example: if e1=east, e2=north

P(&e1)=0, P(e1)=a, P(&e2)=P(e2)=b=(1&a)�2

To find the behaviour of this system, (AL)(9) carried out a comprehensive
computer simulations Which showed a surprising relationship between the
rod's velocity and its length in the stationary state; that beyond a certain
length, the longer rods moved faster, although more sites need to be empty
in order for the longer rods to move. The anomalous behaviour of the rod
velocity led them to study the probability that all of the sites immediately
to the right of the rod were simultaneously unoccupied. Simulations have
showed that the long rods, whether stationary or moving, distort the local
monomer profile to a state which is independent of the monomer density
and create a larger depletion region to the right of them. In an effort to
better understand the asymmetrical interacting particle model with two
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kinds of particles, (AL) (9) have presented a detailed description of some
related continuum models whose behaviour is quite similar to that for the
particle model. As one of these models, the continuum problem of driven
diffusive flow past an impenetrable obstacle, and the obstacle normal to the
incident flow. It is assumed that the flux of particles in the fluid consists of
a diffusive part &D u(x, y, t) and a linear drift part v u(x, y, t); where
u(x, y, t) is the particle concentration, D is the diffusion coefficient, and v
is the drift velocity. Therefore, when D and v are constant, the equation of
continuity gives

ut=D(uxx+uyy)&vux (1)

where subscript represents partial derivative. In the steady state, Eq. (1)
was studied by Phillip et al. in ref. 11, they were considering the flow of
groundwater around a cylindrical obstacle. They obtained an exact solution
in the form of an infinite series. In (AL), (9) they stated that the solution of
Phillip et al. has the qualitative features of the density profile resemble
those observed in the computer simulations of monomer flow past a
stationary obstacle. The same problem was considered by Knessl and
Keller (KK).(12) They were considering the effect of an impenetrable
obstacle upon the concentration of the particles in a fluid when the par-
ticles moving by diffusion and linear advection.

The case of primary concern in this paper is to study another model
of the driven diffusive flow whose behaviour is quite similar to that of the
rod in lattice fluid. Following (AL), (9) we wish to investigate the behaviour
of the continuous density of particles moving by diffusive flux per-
pendicular to the (nonlinear) drift, under the condition that there can be
no flux through an obstacle of length L centered on the origin and oriented
perpendicular to the drift.

In the next section a formulation of the problem is summarized in a
form convenient for later use. Then, a two-parameter family of exact
closed-form solutions to non-linear advection-diffusion equation in (1+2)
dimension, which governs the problem, is presented and corresponding
evolution of the probability density is discussed. In the appendix we
describe briefly the symmetry group analysis of the partial differential equa-
tion which enables us to obtain these great variety of solutions.

II. FORMULATION

Consider the continuum problem of driven diffusive flow of particles
past an impenetrable obstacle in two dimensions see Fig. 1. The obstacle is
an impenetrable strip of length L and is parallel to the z-axis; the strip is
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Fig. 1. A strip parallel to the z axis of length L. The strip intersects the (x, y) plane along
the interval y=&L�2 to y=L�2 on the axis. The direction of advection is parallel to the x
axis from left to right. The moving frame of the strip.

normal to the incident flow. The flux of particles in the fluid is composed
of row tends: a linear diffusive term &Duy perpendicular to the nonlinear
drift tend vLu(1&u), where u(x, y, t) is the particle concentration, D is the
diffusion coefficient, and v is the drift velocity. The velocity v may result
from motion of the fluid (advection), or from gravitational field acting on
the particles (drift). Conservation of particles implies that the divergence of
the flux equal to &ut . Therefore when D and v are constant, u(x, y, t)
satisfies the partial differential equation,

ut=Duyy&vL(1&2u) ux (2)

In the steady state, Eq. (2) becomes

uyy=
vL
D

(1&2u) ux (3)

Since u is the particle concentration, a solution of physical interest should
be non-negative and bounded.

Physically interesting problems usually have some symmetries. Using
these symmetries; we can simplify Eq. (2) to a certain extent. We used Lie
group analysis to find all the invariants of the symmetries, and constructing
solutions with these invariants. The similarity transformation method
based on Lie group analysis has many applications when dealing with dif-
ferential equations and related physical problems.(13�15) Especially in the
nonlinear case, it can sometimes help us in finding physically meaningful

642 Saied and Abd El-Rahman



exact solutions. The equation (2) we are going to consider is strongly non-
linear, and it is desirable and interesting to find all analytic solutions, see
appendix. One purpose of this study is to sketch the feature of each type
of the solutions.

III. QUALITATIVE FEATURES OF SOME EXACT SOLUTIONS

In the following we shall consider some types of our exact solutions of
Eq. (2), which determine the concentration of the particles at any region in
(x, y) plane. The explicit form of u contains the obstacle length L and drift
velocity v, and the diffusion coefficient D, so we are able to discuss the
behaviour of u as a function of them. The exact solution contains two
arbitrary constants k and C, which can be chosen so that u simulates some
desired physical situation, or the initial distribution u(x, y, o) has some
desired features, which mean a great variational in the solution.

1. The First Type Solution

Let us consider time-dependent solution of Eq. (2),

u(x, y, t)=\1
2

&
k

2vL+{1+tanh _\vL&k
2D + (x+ y&kt)+C&= (4)

The concentration of the particles in the stationary state, can be derived
from Eq. (4) by letting k=0,

u(x, y)=
1
2

+
1
2

tanh _vL
2D

(x+ y)+C& (5)

which is the exact solution of Eq. (3).
The constant C affects the solution u mainly as a scaling parameter in

(x, y)-plane, i.e., we can chose C big or small enough to satisfy that the con-
centration u(x, y) have the uniform value unity. Taking into account the
properties of the hyper-tangent function, one can see that the concentration
of particles is bounded and non-negative as time tends to infinity at any
point in (x, y)-plane, i.e., 0�u(x, y)�1, and it reaches maximum about
(vL�2D)(x+ y)r2.8, minimum about (vL�2D)(x+ y)r &2.8, and u=1�2
at (vL�2D)(x+ y)=0. These indicate that the presence of an obstacle,
whether stationary or moving, in a driven diffusive flow with non-linear
drift will distort the local concentration profile to a state which divided the
(x, y)-plane into two regions, not as expected about the strip axis x=0, but
about the straight line x+ y=0. The concentration is relatively higher in
one side than the other side, apart from the value of vL�D.
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If we look at the concentration u(L) as a function of the obstacle
length it appears that, the concentration will increase (or decrease)
monotonically and then it approach a constant value after certain length
Lo , depending on the indicated regions in the (x, y)-plane.

Actually, the concentration profile has not any difference when the
drift is weak or strong relative to the diffusion; v�D may affects the solution
u mainly as a catalytic or inhibitory agent to achieve its maximum or mini-
mum. The typical behaviour of solution (5), with C=o is plotted in Fig. 2
using MAPLE.

2. The Second Type Solution

In the following we present three forms of the time-dependent solution
of Eq. (2), the corresponding stationary solutions can be obtained by let-
ting the arbitrary constant k=0;

u(x, y, t)=
1
2

&
k

2vL
+

2(kt&x)

vL(C+- 2�3D y)2
(6)

the corresponding stationary solution is

u(x, y)=
1
2

&
2x

vL(C+- 2�3D y)2
(7)

The second form is,

u(x, y, t)=
1
2

&
k

2vL
+

3D(kt&x)
vL( y2&6CD(kt&x))4�3 (8)

and the stationary solution is

u(x, y)=
1
2

&
x

vL( y2&6CDx4�3)
(9)

the last formal solution is,

u(x, y, t)=
1
2

&
k

2vL
+

(kt&x)+C
vLy2�3D

(10)

where the corresponding stationary solution is

u(x, y)=
1
2

+
C&x

vLy2�3D
(11)
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Fig. 2. The hyper-tangent solution (5) of Eq. (3), with C=0 where (a) vL�D=8 in region
x+ y>0 (b) vL�D=8 in region x+ y<0, (c) vL�D=2 in region x+ y>0 (d) vL�D=2 in
region x+ y<0. This plot was drawn using MAPLE.

645Asymmetric Model of a Rod in a Lattice Fluid



Further types of exact solution are obtained in the appendix. Inspection of
the stationary solutions (7), (9) and (11), with arbitrary constant C=O,
reveals that the concentration of particles in (x, y) plane has the same form

u(x, y)=
1
2

&
3Dx
vLy2 (12)

and it changes sign when x changes sign. This indicates that the density u
will be non-uniform and as we expect the obstacle to block the flow and
to produce an accumulation of particles on its front side; when x=0&, and
a depletion of particles on its back side; x=0+, It appears that the concentra-
tion u(x, y) has symmetry u(x, y)=u(x, &y), but u(x, y)+u(&x, y)=1.

To have an explicit solution of Eq. (3), this enables one to discuss the
effect of the obstacle length L to the concentration u; which shows that the
concentration has inverse proportional with L, i.e., in front of the obstacle,
the accumulation of particles decrease monotonically with L, but increase
monotonically with L in the back side of the obstacle. Similarly, the effect
of the quantity v�D upon the particle concentration looks like L. The point
of considerable interest is that, the concentration of particles has a
parabolic cyclinder profile in the front side of the obstacle, where x<o,
and in back side where x>o. This can be explained as follows. Consider
the regions in (x, y)-plane in which the concentration u has some fixed
value; say u=uo , then in both sides, we have y2=Ax, where A=3D�
vL(uo&1�2), which is the standard canonical equation of the parabola, its
axis coincides with x-axis and A is the parameter of the parabola. The
smaller the absolute-value of A, the closer the focus to the vertex and the
more spread out the parabola is. The parabolic curve in the xy-plane
represents in (u, x, y)-space a cylindrical surface whose generatrix is
parallel to the u-axis and the line of the parabola is the directrix. In view
of this analysis, there is a wing-like structure in the concentration pattern
of the particles, which agrees with that observed by (AL).(9) Plots of the
solution (12) for different values of VL�D in the two regions are given in
Fig. 3, these plots were drawn using MAPLE.

IV. DISCUSSION AND CONCLUDING REMARKS

One of our motivations for studying this system was to provide some
exact analytic solutions of the non-linear advection-diffusion equation in
(1+2)-dimension (2), which describes well the concentration of particles in
the presence of an obstacle in driven system. We have derived a number of
exact solutions of different variety, which contain parameters and constants
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Fig. 3. The parabola-solution (12) of Eq. (3) where (a) vL�D=8 in region x>0 (b)
vL�D=8 in region x<0, (c) vL�D=2 in region x>0 and (d) vL�D=2 in region x<0 and
the contour lines of parabola shape.

can be chosen to simulate some desired physical situations. The time-
dependent solutions contain terms (kt&x) or (x+ y&kt) which indicate
that the particles will accumulate in a wave-like feature. The stationary
solutions can be obtained by letting k=O, and we have two kinds of solu-
tions, one is the hyper-tangent-solution and the other is parabola-solution
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plotted in Figs. 2 and 3. The plots illustrate connections between the con-
centration u and the parameter vL�D, and show that the two kinds of solu-
tions have the same profile; consist of two sheets, one of them has a
relatively high concentration than the other. The total concentration on the
two sheets are the uniform concentration, u=1. The difference in the con-
centration value is clear in regions directly near to the obstacle surface,
where x=0& or x=0+ and after that it will approach the same values.
The plots show also that, the longer the obstacle, the big difference in con-
centration values around the obstacle surface, and create a larger depletion
region in a wing-like shaper see contour lines in Fig. 3.

It is hoped that such analysis give some explanation of the anomalous
behaviour of this system which observed by (AL), (9) and to provide a
quantitative and qualitative understanding of the density profile.

APPENDIX. SYMMETRY GROUP ANALYSIS OF EQ. (2)
AND ITS EXACT SOLUTIONS

Group-invariance under infinitesimal transformations is used to
generate a wide class of solutions of the non-linear advection-diffusion
equation in (1+2) dimension. The partial differential equation in three
variables is reduced to an ordinary differential equation. Only self-similar
types of solutions are discussed. Though variable-separable types can also
be obtained as a type, these are excluded from consideration.

A short resume of the ideas in the technique, as it applies to the given
Eq. (2), is first given. Invariance of the differential operator and of the solu-
tion surface are the two key requirements.(13�15) Further, consideration is
limited here to invariance under infinitesimal transformations. For more
general considerations, see ref. 14. Consider the transformations

x
�
=x+=X(x, y, t)+0(=2), y

�
= y+=Y(x, y, t)+0(=2)

(A.1)
t
�
=t+=T (x, y, t)+0(=2), u

�
=u+=U(x, y, t, u)+0(=2)

where = is a small parameter defining the group. By retaining terms of
order up to = only, one can see that the derivatives transform as

u
� t

�
=ut+=[Ut+(Uu&Tt) ut&Yt uy&Xt ux]+0(=2)

u
� x

�
=ux+=[Ux+(Uu&Xx) ux&Yxuy&Txut]+0(=2)

u
� y

�
=uy+=[Uy+(Uu&Yx) uy&Xy ux&Tyut]+0(=2) (A.2)

u
� y

�
y
�
=uyy+=[Uyy+(2Uuy&Yyy) uy&Xyyux

&Tyyut+Uuuu2
y+(Uu&2Yy) uyy&2Xyuxy&2Tyuty]+0(=2)
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It is, of course, possible to assume that X, Y, T also depend on u; the
expressions in (A.2) get more lengthy. However, it can finally be seen that
such a dependence drops out. The first requirement of invariance implies
that u

�
satisfies, as a function of (x

�
, y

�
, t

�
), the same differential equation (2)

as u. Substitute for the variables and derivatives from (A.2), terms of order
= must vanish. Then equate the coefficients of different derivatives of u to
zero. These equations provide constraints in the form of partial differential
equations for the determination of X, Y, T and U, yielding

X(x, y, t)=c4x+c5 t+c6

Y(x, y, t)=1�2c2y+c1
(A.3)

T (x, y, t)=c2 t+c3

U(x, y, t, u)=(c4&c2)(u&1�2)&c5 �2vL

where c1 , c2 , c3 , c4 , c5 and c6 are arbitrary constants.
The second requirement of invariance implies that u, u

�
are the same

functions of their arguments. This gives a first order partial differential
equation as

Tut+Xux+Yuy=U (A.4)

This equation is solved by the use of the method of characteristics, which
are given as solutions of any two ordinary differential equations obtained
from

dt
T

=
dx
X

=
dy
Y

=
du
U

(A.5)

The general solution of (A.5) involves three constants, two of them; s and
z become new independent variables and the third constant; F, plays the
role of a new dependent variable. It should be noted that similarity
variables s, z and similarity function F(s, z) obtained form (A.5) are quite
different to each other according to the choice of the constants values ci 's,
i=1 } } } 6 in (A.3). To find the partial differential equation satisfied by
F(s, z), substitute the obtained transformations in Eq. (2). We are able to
distinguish three different types:

DFzz&(k&vL+2vLF ) Fs=0,

where u=F, s=x=kt, and z= y (A.6)
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k2DFss+vL(1&2F ) Fs&Fz=0,

where u=F, s=k&x, and z=t (A.7)

2zDFss&2zFz&2F+1=0,

where u=F&x�2vLt, s= y, and z=t (A.8)

To get the reduced ordinary differential equations, we apply once more the
procedure mentioned above to Eqs. (A.6), (A.7) and (A.8).

Let the infinitesimal transformations

s
�
=s+=S(s, z)+0(=),

z
�
=z+=Z(s, z)+0(=2), and F

�
=F+=f (s, z, F )+0(=2) (A.9)

(be applied to each of Eqs. (A.6), (A.7), and (A.8). Assuming that they are
invariant under the transformations (A.9), we get the explicit form of the
infinitesimal S, Z and f. From the integral constants of the characteristic
equations (ds�S)=(dz�Z)=(dF�f ), we have r(s, z) as a new independent
variable and h(r) as a new dependent variable. Substituting by r and h(r)
into Eq. (A.6), we get the following reduced ordinary differential equations

Dhrr+(2vL h&vL+k) hr=0,

where F=h(r), and r=z&a (A.6.1)

Dhrr&h2=0,

where F=
vL&k

2vL
+

s
2vL

h, and r=z (A.6.2)

hr&6D=0,

where F=
vL&k

2vL
+

h
2vLz2, and r=s (A.6.3)

Dhrr+
1
3

d(rh2)
dr

=0,

where F=
vL&k

2vL
+

h
2vLs1�3, and r=zs&2�3 (A.6.4)

Following the same way, we get for Eq. (A.7).

k2Dhrr&2vLhhr=0, where F=h(r) and r=s+vLz (A.7.1)
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and for Eq. (A.8) we have

2Dhrr+rhr&2h+1=0, where F=h(r) and r=sz&1�2 (A.8.1)

Solutions h(r) lead by back substitution to so-called similarity solutions
u(x, y, t) of Eq. (2):

Equation (A.6.1) has the solution

h(r)=
vL&k

2vL _1+tanh \C+
vL&k

2D
r+&

C is arbitrary constant, then Eq. (2) has the solution

u(x, y, t)=
vL&k

2vL _1+tanh \C+\vL&k
2D + (x+ y&kt)+& (A.10)

Equation (A.6.2) has the solution

h(r)=4�(C+- 2�3D r)2

then, Eq. (2) has the solution

u(x, y, t)=
vl&k
2vL

+
2(kt&x)

vL(C+- 2�3D y)2
(A.11)

Equation (A.6.3) has the solution

h(r)=6Dr+C

then Eq. (2) has the solution

u(x, y, t)=
vL&k

2vL
+

3D(kt&x)+C
vLy2 (A.12)

Equation (A.6.4) has the solution h(r)=6D�(r2&6DC), C is constant, then
Eq. (2) has the solution

u(x, y, t)=
vL&k

2vL
+

3D(kt&x)
vL( y2&6DC(kt&x)4�3)

(A.13)

Equation (A.7.1) has the solution,

h(r)=k2D�(k2DC&vLr)
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Then Eq. (2) has the solution

u(x, y, t)=k2D�(k2DC&vL(ky&x+vLt)) (A.14)

Equation (A.8.1) has the solution of the form

h(r)=1�2+ 1P1(&1, 1�2, &r2�4D)

where 1P1 is the confluent hypergeometric function, by back substitution
we get the exact solution of Eq. (2),

u(x, y, t)=
1
2

&
x

2vLt
+1 P1(&1, 1�2; &y2�4Dt)

which yields the solution of the form

u(x, y, t)=
3
2

+
y2

2Dt
&

x
2vLt

(A.15)
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